|
Mathematics 2003
A sharp threshold for random graphs with a monochromatic triangle in every edge coloringAbstract: Let $\R$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let $G(n,p)$ be the random graph on $n$ vertices with edge probability $p$. We prove that there exists a function $\hat c=\hat c(n)$ with $0
|