全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Semiclassical Nonconcentration near Hyperbolic Orbits

DOI: 10.1016/j.jfa.2009.06.003

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a large class of semiclassical pseudodifferential operators, including Schr\"odinger operators, $ P (h) = -h^2 \Delta_g + V (x) $, on compact Riemannian manifolds, we give logarithmic lower bounds on the mass of eigenfunctions outside neighbourhoods of generic closed hyperbolic orbits. More precisely we show that if $ A $ is a pseudodifferential operator which is microlocally equal to the identity near the hyperbolic orbit and microlocally zero away from the orbit, then \[ \| u \| \leq C (\sqrt{\log(1/h)}/ h) \| P (h)u \| + C \sqrt {\log(1/h)} \| (I - A) u \| . \] This generalizes earlier estimates of Colin de Verdi\`ere-Parisse \cite{CVP} obtained for a special case, and of Burq-Zworski \cite{BZ} for real hyperbolic orbits.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133