全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Harmonic continuous-time branching moments

DOI: 10.1214/105051606000000493

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that the mean inverse populations of nondecreasing, square integrable, continuous-time branching processes decrease to zero like the inverse of their mean population if and only if the initial population $k$ is greater than a first threshold $m_1\ge1$. If, furthermore, $k$ is greater than a second threshold $m_2\ge m_1$, the normalized mean inverse population is at most $1/(k-m_2)$. We express $m_1$ and $m_2$ as explicit functionals of the reproducing distribution, we discuss some analogues for discrete time branching processes and link these results to the behavior of random products involving i.i.d. nonnegative sums.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133