全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Representations of the quantum doubles of finite group algebras and solutions of the Yang--Baxter equation

DOI: 10.1063/1.2359575

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum doubles of finite group algebras form a class of quasi-triangular Hopf algebras which algebraically solve the Yang--Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang--Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups $D_n$. These results may be used to determine constant solutions of the Yang--Baxter equation. We then discuss Baxterisation ans\"atze to obtain solutions of the Yang--Baxter equation with spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group $A_4$ and the symmetric group $S_4$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133