全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Maxwell-type behaviour from a geometrical structure

DOI: 10.1088/0264-9381/23/10/008

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study which geometric structure can be constructed from the vierbein (frame/coframe) variables and which field models can be related to this geometry. The coframe field models, alternative to GR, are known as viable models for gravity, since they have the Schwarzschild solution. Since the local Lorentz invariance is violated, a physical interpretation of additional six degrees of freedom is required. The geometry of such models is usually given by two different connections -- the Levi-Civita symmetric and metric-compatible connection and the Weitzenbock flat connection. We construct a general family of linear connections of the same type, which includes two connections above as special limiting cases. We show that for dynamical propagation of six additional degrees of freedom it is necessary for the gauge field of infinitesimal transformations (antisymmetric tensor) to satisfy the system of two first order differential equations. This system is similar to the vacuum Maxwell system and even coincides with it on a flat manifold. The corresponding ``Maxwell-compatible connections'' are derived. Alternatively, we derive the same Maxwell-type system as a symmetry conditions of the viable models Lagrangian. Consequently we derive a nontrivial decomposition of the coframe field to the pure metric field plus a dynamical field of infinitesimal Lorentz rotations. Exact spherical symmetric solution for our dynamical field is derived. It is bounded near the Schwarzschild radius. Further off, the solution is close to the Coulomb field.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133