全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Quantum diffusion for the Anderson model in the scaling limit

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider random Schr\"odinger equations on $\bZ^d$ for $d\ge 3$ with identically distributed random potential. Denote by $\lambda$ the coupling constant and $\psi_t$ the solution with initial data $\psi_0$. The space and time variables scale as $x\sim \lambda^{-2 -\kappa/2}, t \sim \lambda^{-2 -\kappa}$ with $0< \kappa < \kappa_0(d)$. We prove that, in the limit $\lambda \to 0$, the expectation of the Wigner distribution of $\psi_t$ converges weakly to a solution of a heat equation in the space variable $x$ for arbitrary $L^2$ initial data. The diffusion coefficient is uniquely determined by the kinetic energy associated to the momentum $v$. This work is an extension to the lattice case of our previous result in the continuum \cite{ESYI}, \cite{ESYII}. Due to the non-convexity of the level surfaces of the dispersion relation, the estimates of several Feynman graphs are more involved.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133