|
Mathematics 2005
The colored Jones polynomials and the Alexander polynomial of the figure-eight knotAbstract: The volume conjecture and its generalization state that the series of certain evaluations of the colored Jones polynomials of a knot would grow exponentially and its growth rate would be related to the volume of a three-manifold obtained by Dehn surgery along the knot. In this paper, we show that for the figure-eight knot the series converges in some cases and the limit equals the inverse of its Alexander polynomial.
|