全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

On Lindenstrauss-Pe?czyński spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work we shall be concerned with some stability aspects of the classical problem of extension of $C(K)$-valued operators. We introduce the class $\mathscr{LP}$ of Banach spaces of Lindenstrauss-Pe{\l}czy\'{n}ski type as those such that every operator from a subspace of $c_0$ into them can be extended to $c_0$. We show that all $\mathscr{LP}$-spaces are of type $\mathcal L_\infty$ but not the converse. Moreover, $\mathcal L_\infty$-spaces will be characterized as those spaces $E$ such that $E$-valued operators from $w^*(l_1,c_0)$-closed subspaces of $l_1$ extend to $l_1$. Complemented subspaces of $C(K)$ and separably injective spaces are subclasses of $\mathscr{LP}$-spaces and we show that the former does not contain the latter. It is established that $\mathcal L_\infty$-spaces not containing $l_1$ are quotients of $\mathscr{LP}$-spaces, while $\mathcal L_\infty$-spaces not containing $c_0$, quotients of an $\mathscr{LP}$-space by a separably injective space and twisted sums of $\mathscr{LP}$-spaces are $\mathscr{LP}$-spaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133