全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

An improved local wellposedness result for the modified KdV equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Cauchy problem for the modified KdV equation is shown to be locally well posed for data u_0 in the space \hat(H^r_s) defined by the norm ||u_0||:=||<\xi>^s \hat(u_0)||_L^r', provided 4/3 < r \le 2, s \ge 1/2 - 1/(2r). For r=2 this coincides with the best possible result on the H^s - scale due to Kenig, Ponce and Vega. The proof uses an appropriate variant of the Fourier restriction norm method and linear as well as bilinear estimates for the solutions of the Airy equation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133