|
Mathematics 2003
On cubics and quartics through a canonical curveAbstract: We construct families of quartic and cubic hypersurfaces through a canonical curve, which are parametrized by an open subset in a Grassmannian and a Flag variety respectively. Using G. Kempf's cohomological obstruction theory, we show that these families cut out the canonical curve and that the quartics are birational (via a blowing-up of a linear subspace) to quadric bundles over the projective plane, whose Steinerian curve equals the canonical curve.
|