全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Supercriticality of novel type induced by electric dipole in gapped graphene

DOI: 10.1103/PhysRevB.92.235417

Full-Text   Cite this paper   Add to My Lib

Abstract:

We reveal a new type of supercritical behavior in gapped graphene with two oppositely charged impurities by studying the two-dimensional Dirac equation for quasiparticles with the Coulomb potential regularized at small distances accounting the lattice effects. By utilizing the variational Galerkin--Kantorovich method, we show that for supercritical electric dipole the wave function of the electron bound state changes its localization from the negatively charged impurity to the positively charged one as the distance between the impurities changes. Such a migration of the wave function corresponds to the electron and hole spontaneously created from the vacuum in bound states screening the positively and negatively charged impurities of the supercritical electric dipole, respectively. We generalize our results to a particle-hole asymmetric case, where the charges of impurities differ in signs and absolute values and demonstrate that the necessary energetic condition for the supercriticality of novel type to occur is that the energy levels of single positively and negatively charged impurities traverse together the energy distance separating the upper and lower continua. The robustness of the supercriticality of novel type is confirmed by the study of an exactly solvable 1D problem of the Dirac equation with the square well and barrier potential modeling an electric dipole potential.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133