全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Universal entanglement for higher dimensional cones

Full-Text   Cite this paper   Add to My Lib

Abstract:

The entanglement entropy of a generic $d$-dimensional conformal field theory receives a regulator independent contribution when the entangling region contains a (hyper)conical singularity of opening angle $\Omega$, codified in a function $a^{(d)}(\Omega)$. In arXiv:1505.04804, we proposed that for three-dimensional conformal field theories, the coefficient $\sigma$ characterizing the smooth surface limit of such contribution ($\Omega\rightarrow \pi$) equals the stress tensor two-point function charge $C_{ T}$, up to a universal constant. In this paper, we prove this relation for general three-dimensional holographic theories, and extend the result to general dimensions. In particular, we show that a generalized coefficient $\sigma^{ (d)}$ can be defined for (hyper)conical entangling regions in the almost smooth surface limit, and that this coefficient is universally related to $C_{ T}$ for general holographic theories, providing a general formula for the ratio $\sigma^{ (d)}/C_{ T}$ in arbitrary dimensions. We conjecture that the latter ratio is universal for general CFTs. Further, based on our recent results in arXiv:1507.06997, we propose an extension of this relation to general R\'enyi entropies, which we show passes several consistency checks in $d=4$ and $d=6$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133