全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Triplet superconductivity and proximity effect induced by Bloch and Néel domain walls

DOI: 10.1088/0953-2048/28/8/085015

Full-Text   Cite this paper   Add to My Lib

Abstract:

Noncollinear magnetic interfaces introduced in superconductor (SC)/ferromagnet/SC heterostructures allow for spin-flipping processes and are able to generate equal-spin spin-triplet pairing correlations within the ferromagnetic region. This leads to the occurrence of the so-called long-range proximity effect. Particular examples of noncollinear magnetic interfaces include Bloch and N\'{e}el domain walls. Here, we present results for heterostructures containing Bloch and N\'{e}el domain walls based on self-consistent solutions of the spin-dependent Bogoliubov$-$de Gennes equations in the clean limit. In particular, we investigate the thickness dependence of Bloch and N\'{e}el domain walls on induced spin-triplet pairing correlations and compare with other experimental and theoretical results, including conical magnetic layers as noncollinear magnetic interfaces. It is shown that both, Bloch and N\'{e}el domain walls lead to the generation of unequal-spin spin-triplet pairing correlations of similar strength as for conical magnetic layers. However, for the particular heterostructure geometries investigated, only Bloch domain walls lead to the generation of equal-spin spin-triplet pairing correlations. They are stronger than those generated by an equivalent thickness of conical magnetic layers. In order for N\'{e}el domain walls to induce equal-spin spin-triplet pairing correlations, they have to be oriented such that the noncollinearity appears within the plane parallel to the interface region.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133