全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2002 

Non-Markovian stochastic Schr?dinger equations: Generalization to real-valued noise using quantum measurement theory

DOI: 10.1103/PhysRevA.66.012108

Full-Text   Cite this paper   Add to My Lib

Abstract:

Do stochastic Schr\"odinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system {\em on average} obeys a master equation, the answer is yes. Markovian stochastic Schr\"odinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic \sch equation introduced by Strunz, Di\' osi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum measurement theory approach, we rederive their unraveling which involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection respectively. Although we use quantum measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133