|
Physics 2013
Parallelized Quantum Monte Carlo Algorithm with Nonlocal Worm UpdatesDOI: 10.1103/PhysRevLett.112.140603 Abstract: Based on the worm algorithm in the path-integral representation, we propose a general quantum Monte Carlo algorithm suitable for parallelizing on a distributed-memory computer by domain decomposition. Of particular importance is its application to large lattice systems of bosons and spins. A large number of worms are introduced and its population is controlled by a fictitious transverse field. For a benchmark, we study the size-dependence of the Bose-condensation order parameter of the hardcore Bose-Hubbard model with $L\times L\times \beta t = 10240\times 10240\times 16$, using 3200 computing cores, which shows good parallelization efficiency.
|