全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Prediction of phonon-mediated high temperature superconductivity in stoichiometric Li$_2$B$_3$C

DOI: 10.1103/PhysRevB.91.045132

Full-Text   Cite this paper   Add to My Lib

Abstract:

The discovery of superconductivity in Magnesium Diborate (MgB$_2$) has stimulated great interest in the search of new superconductors with similar lattice structures. Unlike cuprate or iron-based superconductors, MgB$_2$ is indisputably a phonon-mediated high temperature superconductor. The emergence of high temperature superconductivity in this material results from the strong coupling between the boron $\sigma$-bonding electrons around the Fermi level and the bond-stretching optical phonon modes. Here we show, based on the first-principles calculations, that Li$_2$B$_3$C is such a good candidate of superconductor whose superconducting transition temperature (T$_c$) might be even higher than MgB$_2$. Li$_2$B$_3$C consists of alternating graphene-like boron-carbon layers and boron-boron layers with intercalated lithium atoms between them. Similar to MgB$_2$, Li$_2$B$_3$C is inherently metallic and possesses two $\sigma$- and two $\pi$-electron bands around the Fermi energy. The superconducting pairs are glued predominately by the strong interaction between boron $\sigma$-bonding electrons and various optical phonon modes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133