全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Vacuum Instability in Electric Fields via AdS/CFT: Euler-Heisenberg Lagrangian and Planckian Thermalization

DOI: 10.1007/JHEP10(2013)116

Full-Text   Cite this paper   Add to My Lib

Abstract:

We analyze vacuum instability of strongly coupled gauge theories in a constant electric field using AdS/CFT correspondence. The model is the N=2 1-flavor supersymmetric large N_c QCD in the strong 't Hooft coupling limit. We calculate the Euler-Heisenberg effective Lagrangian L(E), which encodes the nonlinear response and the quantum decay rate of the vacuum in a background electric field E, from the complex D-brane action in AdS/CFT. We find that the decay rate given by Im L(E) becomes nonzero above a critical electric field set by the confining force between quarks. A large-E expansion of Im L(E) is found to coincide with that of the Schwinger effects in QED, replacing its electron mass by the confining force. Then, the time-dependent response of the system in a strong electric field is solved non-perturbatively, and we observe a universal thermalization at a shortest timescale "Planckian thermalization time" t ~ 1/T ~ E^{-1/2}. Here, T is an effective temperature which quarks feel in the nonequilibrium state with nonzero electric current, calculated in AdS/CFT as a Hawking temperature. Stronger electric fields accelerate the thermalization, and for a realistic value of the electric field in RHIC experiment, we obtain t ~ 1 [fm/c], which is consistent with the believed value.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133