|
Physics 2013
Low-energy bound states at interfaces between superconducting and block antiferromagnet regions in KxFe{2-y}Se2DOI: 10.1103/PhysRevB.88.014519 Abstract: The high-Tc alkali doped iron selenide superconductors KxFe{2-y}Se2 have been recently shown to be intrinsically phase separated into Fe vacancy ordered block antiferromagnetic regions and superconducting regions at low temperatures. In this work, we use a microscopic five orbital Hubbard model to obtain the electronic low-energy states near the interfaces between block antiferromagnets and superconductors. It is found that abundant low-energy in-gap bound states exist near such interfaces irrespective of whether the superconductor has d- or s-wave pairing symmetry. By contrast, it is shown how nonmagnetic scattering planes can provide a natural means to distinguish between these two leading pairing instabilities of the KxFe{2-y}Se2 materials.
|