|
Physics 2013
New limits on variation of the fine-structure constant using atomic dysprosiumDOI: 10.1103/PhysRevLett.111.060801 Abstract: We report on the spectroscopy of radio-frequency transitions between nearly-degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant, $\alpha$, owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of $\alpha$ competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in $^{164}$Dy and 235-MHz transition in $^{162}$Dy were measured over the span of two years. Linear variation of $\alpha$ is found to be $\dot{\alpha}/\alpha = (-5.8\pm6.9)\times10^{-17}$ yr$^{-1}$, consistent with zero. The same data are used to constrain the dimensionless parameter $k_\alpha$, characterizing a possible coupling of $\alpha$ to a changing gravitational potential. We find that $k_\alpha = (-5.5\pm5.2)\times10^{-7}$, essentially consistent with zero and the best constraint to date.
|