全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Numerical Simulations of Snake Dissipative Solitons in Complex Cubic-Quintic Ginzburg-Landau Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Numerical simulations of the complex cubic-quintic Ginzburg-Landau equation (CCQGLE), a canonical equation governing the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines, reveal five entirely novel classes of pulse or solitary waves solutions, viz. pulsating, creeping, snaking, erupting, and chaotical solitons. Here, we develop a theoretical framework for analyzing the full spatio-temporal structure of one class of dissipative solution (snaking soliton) of the CCQGLE using the variational approximation technique and the dynamical systems theory. The qualitative behavior of the snaking soliton is investigated using the numerical simulations of (a) the full nonlinear complex partial differential equation and (b) a system of three ordinary differential equations resulting from the variational approximation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133