全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

An inequality for the zeta function of a planar domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the zeta function $\zeta\_\Omega$ for the Dirichlet-to-Neumann operator of a simply connected planar domain $\Omega$ bounded by a smooth closed curve.We prove non-negativeness and growth properties for $\zeta\_\Omega(s)-2\big({L(\partial \Omega)\over 2\pi}\big)^s\zeta\_R(s)\ (s\leq-1)$, where $L(\partial \Omega)$ is the length of the boundary curve and $\zeta\_R$ stands for the classical Riemann zeta function.Two analogs of these results are also provided.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133