全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

A catalog of visual-like morphologies in the 5 CANDELS fields using deep-learning

DOI: 10.1088/0067-0049/221/1/8

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a catalog of visual like H-band morphologies of $\sim50.000$ galaxies ($H_{f160w}<24.5$) in the 5 CANDELS fields (GOODS-N, GOODS-S, UDS, EGS and COSMOS). Morphologies are estimated with Convolutional Neural Networks (ConvNets). The median redshift of the sample is $\sim1.25$. The algorithm is trained on GOODS-S for which visual classifications are publicly available and then applied to the other 4 fields. Following the CANDELS main morphology classification scheme, our model retrieves the probabilities for each galaxy of having a spheroid, a disk, presenting an irregularity, being compact or point source and being unclassifiable. ConvNets are able to predict the fractions of votes given a galaxy image with zero bias and $\sim10\%$ scatter. The fraction of miss-classifications is less than $1\%$. Our classification scheme represents a major improvement with respect to CAS (Concentration-Asymmetry-Smoothness)-based methods, which hit a $20-30\%$ contamination limit at high z. The catalog is released with the present paper via the $\href{http://rainbowx.fis.ucm.es/Rainbow_navigator_public}{Rainbow\,database}$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133