全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  1999 

Topological Expansion and Exponential Asymptotics in 1D Quantum Mechanics

DOI: 10.1088/0305-4470/33/8/304

Full-Text   Cite this paper   Add to My Lib

Abstract:

Borel summable semiclassical expansions in 1D quantum mechanics are considered. These are the Borel summable expansions of fundamental solutions and of quantities constructed with their help. An expansion, called topological,is constructed for the corresponding Borel functions. Its main property is to order the singularity structure of the Borel plane in a hierarchical way by an increasing complexity of this structure starting from the analytic one. This allows us to study the Borel plane singularity structure in a systematic way. Examples of such structures are considered for linear, harmonic and anharmonic potentials. Together with the best approximation provided by the semiclassical series the exponentially small contribution completing the approximation are considered. A natural method of constructing such an exponential asymptotics relied on the Borel plane singularity structures provided by the topological expansion is developed. The method is used to form the semiclassical series including exponential contributions for the energy levels of the anharmonic oscillator.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133