全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2001 

Dynamical Friction in dE Globular Cluster Systems

DOI: 10.1086/320545

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dynamical friction timescale for globular clusters to sink to the center of a dwarf elliptical galaxy (dE) is significantly less than a Hubble time if the halos have King-model or isothermal profiles and the globular clusters formed with the same radial density profile as the underlying stellar population. We examine the summed radial distribution of the entire globular cluster systems and the bright globular cluster candidates in 51 Virgo and Fornax Cluster dEs for evidence of dynamical friction processes. We find that the summed distribution of the entire globular cluster population closely follows the exponential profile of the underlying stellar population. However, there is a deficit of bright clusters within the central regions of dEs (excluding the nuclei), perhaps due to the orbital decay of these massive clusters into the dE cores. We also predict the magnitude of each dE's nucleus assuming the nuclei form via dynamical friction. The observed trend of decreasing nuclear luminosity with decreasing dE luminosity is much stronger than predicted if the nuclei formed via simple dynamical friction processes. We find that the bright dE nuclei could have been formed from the merger of orbitally decayed massive clusters, but the faint nuclei are several magnitudes fainter than expected. These faint nuclei are found primarily in M_V > -14 dEs which have high globular cluster specific frequencies and extended globular cluster systems. In these galaxies, supernovae-driven winds, high central dark matter densities, extended dark matter halos, the formation of new star clusters, or tidal interactions may act to prevent dynamical friction from collapsing the entire globular cluster population into a single bright nucleus.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133