|
Physics 2001
The ages and colours of cool helium-core white dwarf starsDOI: 10.1046/j.1365-8711.2001.04449.x Abstract: The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-gray model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 solar masses and follow their evolution from the end of mass loss episodes during their pre-white dwarf evolution down to very low surface luminosities. We find that when the effective temperature decreases below 4000K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour-colour and colour-magnitude diagrams and we find that helium-core white dwarfs with masses ranging from approx. 0.18 to 0.3 solar masses can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M_V approx. 16.5. In view of these results, many low-mass helium white dwarfs could have had time enough to evolve to the domain of collision-induced absorption from molecular hydrogen, showing blue colours.
|