|
Physics 2001
Quantum complexities of ordered searching, sorting, and element distinctnessAbstract: We consider the quantum complexities of the following three problems: searching an ordered list, sorting an un-ordered list, and deciding whether the numbers in a list are all distinct. Letting N be the number of elements in the input list, we prove a lower bound of \frac{1}{\pi}(\ln(N)-1) accesses to the list elements for ordered searching, a lower bound of \Omega(N\log{N}) binary comparisons for sorting, and a lower bound of \Omega(\sqrt{N}\log{N}) binary comparisons for element distinctness. The previously best known lower bounds are {1/12}\log_2(N) - O(1) due to Ambainis, \Omega(N), and \Omega(\sqrt{N}), respectively. Our proofs are based on a weighted all-pairs inner product argument. In addition to our lower bound results, we give a quantum algorithm for ordered searching using roughly 0.631 \log_2(N) oracle accesses. Our algorithm uses a quantum routine for traversing through a binary search tree faster than classically, and it is of a nature very different from a faster algorithm due to Farhi, Goldstone, Gutmann, and Sipser.
|