|
Physics 2001
Percolation and jamming in random sequential adsorption of linear segments on square latticeDOI: 10.1103/PhysRevE.63.051108 Abstract: We present the results of study of random sequential adsorption of linear segments (needles) on sites of a square lattice. We show that the percolation threshold is a nonmonotonic function of the length of the adsorbed needle, showing a minimum for a certain length of the needles, while the jamming threshold decreases to a constant with a power law. The ratio of the two thresholds is also nonmonotonic and it remains constant only in a restricted range of the needles length. We determine the values of the correlation length exponent for percolation, jamming and their ratio.
|