全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2001 

Effect of angular momentum on equilibrium properties of a self-gravitating system

DOI: 10.1103/PhysRevE.65.046143

Full-Text   Cite this paper   Add to My Lib

Abstract:

The microcanonical properties of a two dimensional system of N classical particles interacting via a smoothed Newtonian potential as a function of the total energy E and the total angular momentum L are discussed. In order to estimate suitable observables a numerical method based on an importance sampling algorithm is presented. The entropy surface shows a negative specific heat region at fixed L for all L. Observables probing the average mass distribution are used to understand the link between thermostatistical properties and the spatial distribution of particles. In order to define a phase in non-extensive system we introduce a more general observable than the one proposed by Gross and Votyakov [Eur. Phys. J. B:15, 115 (2000)]: the sign of the largest eigenvalue of the entropy surface curvature. At large E the gravitational system is in a homogeneous gas phase. At low E there are several collapse phases; at L=0 there is a single cluster phase and for L>0 there are several phases with 2 clusters. All these pure phases are separated by first order phase transition regions. The signal of critical behaviour emerges at different points of the parameter space (E,L). We also discuss the ensemble introduced in a recent pre-print by Klinko & Miller; this ensemble is the canonical analogue of the one at constant energy and constant angular momentum. We show that a huge loss of informations appears if we treat the system as a function of intensive parameters: besides the known non-equivalence at first order phase transitions, there exit in the microcanonical ensemble some values of the temperature and the angular velocity for which the corresponding canonical ensemble does not exist, i.e. the partition sum diverges.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133