|
Physics 2001
Atomic motion in magneto-optical double-well potentials: A new testing ground for quantum chaosDOI: 10.1103/PhysRevE.64.056119 Abstract: We have identified ultra-cold atoms in magneto-optical double-well potentials as a very clean setting in which to study the quantum and classical dynamics of a nonlinear system with multiple degrees of freedom. In this system, entanglement at the quantum level and chaos at the classical level arise from nonseparable couplings between the atomic spin and its center of mass motion. The main features of the chaotic dynamics are analyzed using action-angle variables and Poincare surfaces of section. We show that for the initial state prepared in current experiments [D. J. Haycock et al., Phys. Rev. Lett. 85, 3365 (2000)], the classical and quantum dynamics diverge, and the observed experimental dynamics are best described by quantum mechanics. Furthermore, the motion corresponds to tunneling through a dynamical potential barrier. The coupling between the spin and the motional subsystems, which are very different in nature from one another, leads to new questions regarding the transition from regular quantum dynamics to chaotic classical motion.
|