全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2001 

The surface barrier in mesoscopic type I and type II superconductors

DOI: 10.1103/PhysRevB.65.144529

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the surface barrier for magnetic field penetration in mesoscopic samples of both type I and type II superconductors. Our results are obtained from numerical simulations of the time-dependent Ginzburg-Landau equations. We calculate the dependence of the first field for flux penetration ($H_p$) with the Ginzburg-Landau parameter ($\kappa $) observing an increase of $H_p$ with decreasing $\kappa$ for a superconductor-insulator boundary condition ($(\nabla -iA)\Psi|_n=0$) while for a superconductor-normal boundary condition (approximated by the limiting case of $\Psi|_S=0$) $H_p$ has a smaller value independent of $\kappa$ and proportional to $H_c$. We study the magnetization curves and penetration fields at different sample sizes and for square and thin film geometries. For small mesoscopic samples we study the peaks and discontinuous jumps found in the magnetization as a function of magnetic field. To interpret these jumps we consider that vortices located inside the sample induce a reinforcement of the surface barrier at fields greater than the first penetration field $H_{p1}$. This leads to multiple penetration fields $H_{pi} = H_{p1}, H_{p2}, H_{p3}, ...$ for vortex entrance in mesoscopic samples. We study the dependence with sample size of the penetration fields $H_{pi}$. We explain these multiple penetration fields extending the usual Bean-Livingston analysis by considering the effect of vortices inside the superconductor and the finite size of the sample.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133