全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2001 

Isotopically engineered silicon/silicon-germanium nanostructures as basic elements for a nuclear spin quantum computer

DOI: 10.1088/0953-8984/13/26/319

Full-Text   Cite this paper   Add to My Lib

Abstract:

The idea of quantum computation is the most promising recent developments in the high-tech domain, while experimental realization of a quantum computer poses a formidable challenge. Among the proposed models especially attractive are semiconductor based nuclear spin quantum computer's (S-NSQC), where nuclear spins are used as quantum bistable elements, ''qubits'', coupled to the electron spin and orbital dynamics. We propose here a scheme for implementation of basic elements for S-NSQC's which are realizable within achievements of the modern nanotechnology. These elements are expected to be based on a nuclear-spin-controlled isotopically engineered Si/SiGe heterojunction, because in these semiconductors one can vary the abundance of nuclear spins by engineering the isotopic composition. A specific device is suggested, which allows one to model the processes of recording, reading and information transfer on a quantum level using the technique of electrical detection of the magnetic state of nuclear spins. Improvement of this technique for a semiconductor system with a relatively small number of nuclei might be applied to the manipulation of nuclear spin ''qubits'' in the future S-NSQC.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133