|
Physics 1999
On the Integrability of a Class of Monge-Ampere EquationsAbstract: We give the Lax representations for for the elliptic, hyperbolic and homogeneous second order Monge-Ampere equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Monge-Ampere equations. Local as well nonlocal conserved densities are obtained.
|