全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  1999 

Reducing vortex density in superconductors using the ratchet effect

DOI: 10.1038/22485

Full-Text   Cite this paper   Add to My Lib

Abstract:

A serious obstacle that impedes the application of low and high temperature superconductor (SC) devices is the presence of trapped flux. Flux lines or vortices are induced by fields as small as the Earth's magnetic field. Once present, vortices dissipate energy and generate internal noise, limiting the operation of numerous superconducting devices. Methods used to overcome this difficulty include the pinning of vortices by the incorporation of impurities and defects, the construction of flux dams, slots and holes and magnetic shields which block the penetration of new flux lines in the bulk of the SC or reduce the magnetic field in the immediate vicinity of the superconducting device. Naturally, the most desirable would be to remove the vortices from the bulk of the SC. There is no known phenomenon, however, that could form the basis for such a process. Here we show that the application of an ac current to a SC that is patterned with an asymmetric pinning potential can induce vortex motion whose direction is determined only by the asymmetry of the pattern. The mechanism responsible for this phenomenon is the so called ratchet effect, and its working principle applies to both low and high temperature SCs. As a first step here we demonstrate that with an appropriate choice of the pinning potential the ratchet effect can be used to remove vortices from low temperature SCs in the parameter range required for various applications.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133