全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots

DOI: 10.1103/PhysRevB.90.115313

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate the nonlinear regime of charge and energy transport through Coulomb-blockaded quantum dots. We discuss crossed effects that arise when electrons move in response to thermal gradients (Seebeck effect) or energy flows in reaction to voltage differences (Peltier effect). We find that the differential thermoelectric conductance shows a characteristic Coulomb butterfly structure due to charging effects. Importantly, we show that experimentally observed thermovoltage zeros are caused by the activation of Coulomb resonances at large thermal shifts. Furthermore, the power dissipation asymmetry between the two attached electrodes can be manipulated with the applied voltage, which has implications for the efficient design of nanoscale coolers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133