全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Hierarchical neural networks perform both serial and parallel processing

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work we study a Hebbian neural network, where neurons are arranged according to a hierarchical architecture such that their couplings scale with their reciprocal distance. As a full statistical mechanics solution is not yet available, after a streamlined introduction to the state of the art via that route, the problem is consistently approached through signal- to-noise technique and extensive numerical simulations. Focusing on the low-storage regime, where the amount of stored patterns grows at most logarithmical with the system size, we prove that these non-mean-field Hopfield-like networks display a richer phase diagram than their classical counterparts. In particular, these networks are able to perform serial processing (i.e. retrieve one pattern at a time through a complete rearrangement of the whole ensemble of neurons) as well as parallel processing (i.e. retrieve several patterns simultaneously, delegating the management of diff erent patterns to diverse communities that build network). The tune between the two regimes is given by the rate of the coupling decay and by the level of noise affecting the system. The price to pay for those remarkable capabilities lies in a network's capacity smaller than the mean field counterpart, thus yielding a new budget principle: the wider the multitasking capabilities, the lower the network load and viceversa. This may have important implications in our understanding of biological complexity.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133