全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

A leakage-resilient approach to fault-tolerant quantum computing with superconducting elements

DOI: 10.1103/PhysRevA.91.020302

Full-Text   Cite this paper   Add to My Lib

Abstract:

Superconducting qubits, while promising for scalability and long coherence times, contain more than two energy levels, and therefore are susceptible to errors generated by the leakage of population outside of the computational subspace. Such leakage errors constitute a prominent roadblock towards fault-tolerant quantum computing (FTQC) with superconducting qubits. FTQC using topological codes is based on sequential measurements of multiqubit stabilizer operators. Here, we first propose a leakage-resilient procedure to perform repetitive measurements of multiqubit stabilizer operators, and then use this scheme as an ingredient to develop a leakage-resilient approach for surface code quantum error correction with superconducting circuits. Our protocol is based on swap operations between data and ancilla qubits at the end of every cycle, requiring read-out and reset operations on every physical qubit in the system, and thereby preventing persistent leakage errors from occurring.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133