|
Physics 2014
Formation of Quantum Phase Slip Pairs in Superconducting NanowiresDOI: 10.1103/PhysRevX.5.021023 Abstract: Macroscopic quantum tunneling (MQT) is a fundamental phenomenon of quantum mechanics related to the actively debated topic of quantum-to-classical transition. The ability to realize MQT affects implementation of qubit-based quantum computing schemes and their protection against decoherence. Decoherence in qubits can be reduced by means of topological protection, e.g. by exploiting various parity effects. In particular, paired phase slips can provide such protection for superconducting qubits. Here, we report on the direct observation of quantum paired phase slips in thin-wire superconducting loops. We show that in addition to conventional single phase slips that change superconducting order parameter phase by $2\pi$, there are quantum transitions changing the phase by $4\pi$. Quantum paired phase slips represent a synchronized occurrence of two macroscopic quantum tunneling events, i.e. cotunneling. We demonstrate the existence of a remarkable regime in which paired phase slips are exponentially more probable than single ones.
|