全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Eigensolution techniques, their applications and the Fisher's information entropy of Tietz-Wei diatomic molecular model

DOI: 10.1088/0031-8949/89/11/115204

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, approximate analytical solution of Schr\"odinger, Klein-Gordon and Dirac equations under the Tietz-Wei (TW) diatomic molecular potential are represented by using an approximation for the centrifugal term. We have applied three types of eigensolution techniques; the functional analysis approach (FAA), supersymmetry quantum mechanics (SUSYQM) and asymptotic iteration method (AIM) to solve Klein-Gordon Dirac and Schr\"odinger equations, respectively. The energy eigenvalues and the corresponding eigenfunctions for these three wave equations are obtained and some numerical results and figures are reported. It has been shown that these techniques yielded exactly same results. some expectation values of the TW diatomic molecular potential within the framework of the Hellmann-Feynman theorem (HFT) have been presented. The probability distributions which characterize the quantum-mechanical states of TW diatomic molecular potential are analysed by means of complementary information measures of a probability distribution called the Fishers information entropy. This distribution has been described in terms of Jacobi polynomials, whose characteristics are controlled by the quantum numbers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133