全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Derivative-free optimization for parameter estimation in computational nuclear physics

DOI: 10.1088/0954-3899/42/3/034031

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider optimization problems that arise when estimating a set of unknown parameters from experimental data, particularly in the context of nuclear density functional theory. We examine the cost of not having derivatives of these functionals with respect to the parameters. We show that the POUNDERS code for local derivative-free optimization obtains consistent solutions on a variety of computationally expensive energy density functional calibration problems. We also provide a primer on the operation of the POUNDERS software in the Toolkit for Advanced Optimization.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133