全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Universal Subspaces for Local Unitary Groups of Fermionic Systems

DOI: 10.1007/s00220-014-2187-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\mathcal{V}=\wedge^N V$ be the $N$-fermion Hilbert space with $M$-dimensional single particle space $V$ and $2N\le M$. We refer to the unitary group $G$ of $V$ as the local unitary (LU) group. We fix an orthonormal (o.n.) basis $\ket{v_1},...,\ket{v_M}$ of $V$. Then the Slater determinants $e_{i_1,...,i_N}:= \ket{v_{i_1}\we v_{i_2}\we...\we v_{i_N}}$ with $i_1<...3. If $M$ is even, the well known BCS states are not LU-equivalent to any single occupancy state. Our main result is that for N=3 and $M$ even there is a universal subspace $\cW\subseteq\cS$ spanned by $M(M-1)(M-5)/6$ states $e_{i_1,...,i_N}$. Moreover the number $M(M-1)(M-5)/6$ is minimal.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133