全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Gra-phene as Advanced Oxygen Reduction Electrocatalysts

Full-Text   Cite this paper   Add to My Lib

Abstract:

Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co3O4 nanoparticles, a manganese-cobalt spinel MnCo2O4/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrid results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitu-tion of Co3+ sites by Mn3+, which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared to the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physi-cal mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo2O4/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with superior stability to Pt/C in alkaline solutions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133