全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Kappa-deformed random-matrix theory based on Kaniadakis statistics

DOI: 10.1142/S0217984912500595

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a possible extension of the random-matrix theory, which is widely used to describe spectral fluctuations of chaotic systems. By considering the Kaniadakis non-Gaussian statistics, characterized by the index {\kappa} (Boltzmann-Gibbs entropy is recovered in the limit {\kappa}\rightarrow0), we propose the non-Gaussian deformations ({\kappa} \neq 0) of the conventional orthogonal and unitary ensembles of random matrices. The joint eigenvalue distributions for the {\kappa}-deformed ensembles are derived by applying the principle maximum entropy to Kaniadakis entropy. The resulting distribution functions are base invarient as they depend on the matrix elements in a trace form. Using these expressions, we introduce a new generalized form of the Wigner surmise valid for nearly-chaotic mixed systems, where a basis-independent description is still expected to hold. We motivate the necessity of such generalization by the need to describe the transition of the spacing distribution from chaos to order, at least in the initial stage. We show several examples about the use of the generalized Wigner surmise to the analysis of the results of a number of previous experiments and numerical experiments. Our results suggest the entropic index {\kappa} as a measure for deviation from the state of chaos. We also introduce a {\kappa}-deformed Porter-Thomas distribution of transition intensities, which fits the experimental data for mixed systems better than the commonly-used gamma-distribution.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133