全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Quantifying Spatiotemporal Chaos in Rayleigh-Bénard Convection

DOI: 10.1103/PhysRevE.85.046201

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-B\'enard convection in a cylindrical domain with experimentally relevant boundary conditions. We use the variation of the spectrum of Lyapunov exponents and the leading order Lyapunov vector with system parameters to quantify states of high-dimensional chaos in fluid convection. We explore the relationship between the time dynamics of the spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics we find that all of the Lyapunov exponents are positively correlated with the leading order Lyapunov exponent and we quantify the details of their response to the dynamics of defects. The leading order Lyapunov vector is used to identify topological features of the fluid patterns that contribute significantly to the chaotic dynamics. Our results show a transition from boundary dominated dynamics to bulk dominated dynamics as the system size is increased. The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with system parameters to quantify how the underlying high-dimensional strange attractor accommodates a range of different chaotic dynamics.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133