|
Physics 2012
Revisiting the charged BTZ metric in nonlinear electrodynamicsAbstract: In contrast to its chargeless version the charged Banados, Taitelboim and Zanelli (BTZ) metric in linear Maxwell electromagnetism is known to be singular at r=0. We show, by employing nonlinear electrodynamics that one obtains charged, extension of the BTZ metric with regular electric field. This we do by choosing a logarithmic Lagrangian for the nonlinear electrodynamics. A Theorem is proved on the existence of electric black holes and combining this results with a duality principle disproves the existence of magnetic black holes in 2+1-dimensions.
|