全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Finite-Element Approximation of One-Sided Stefan Problems with Anisotropic, Approximately Crystalline, Gibbs--Thomson Law

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a finite-element approximation for the one-sided Stefan problem and the one-sided Mullins--Sekerka problem, respectively. The problems feature a fully anisotropic Gibbs--Thomson law, as well as kinetic undercooling. Our approximation, which couples a parametric approximation of the moving boundary with a finite element approximation of the bulk quantities, can be shown to satisfy a stability bound, and it enjoys very good mesh properties which means that no mesh smoothing is necessary in practice. In our numerical computations we concentrate on the simulation of snow crystal growth. On choosing realistic physical parameters, we are able to produce several distinctive types of snow crystal morphologies. In particular, facet breaking in approximately crystalline evolutions can be observed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133