全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2010 

Soft Classification of Diffractive Interactions at the LHC

DOI: 10.1063/1.3601387

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multivariate machine learning techniques provide an alternative to the rapidity gap method for event-by-event identification and classification of diffraction in hadron-hadron collisions. Traditionally, such methods assign each event exclusively to a single class producing classification errors in overlap regions of data space. As an alternative to this so called hard classification approach, we propose estimating posterior probabilities of each diffractive class and using these estimates to weigh event contributions to physical observables. It is shown with a Monte Carlo study that such a soft classification scheme is able to reproduce observables such as multiplicity distributions and relative event rates with a much higher accuracy than hard classification.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133