全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

DOI: 10.1088/1475-7516/2013/11/002

Full-Text   Cite this paper   Add to My Lib

Abstract:

We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not "observer dependent" as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: \lambda_J = (5\pi/G)^(1/2)Q^(-1/3)\rho_dm^(-1/6). The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 x 10^(-6) solar masses.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133