全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Solitons and kinks in a general car-following model

DOI: 10.1103/PhysRevE.88.032804

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a car-following model of traffic flow which assumes only that a car's acceleration depends on its own speed, the headway ahead of it, and the rate of change of headway, with only minimal assumptions about the functional form of that dependence. The velocity of uniform steady flow is found implicitly from the acceleration function, and its linear stability criterion can be expressed simply in terms of it. Crucially, unlike in previously analyzed car-following models, the threshold of absolute stability does not generally coincide with an inflection point in the steady velocity function. The Burgers and KdV equations can be derived under the usual assumptions, but the mKdV equation arises only when absolute stability does coincide with an inflection point. Otherwise, the KdV equation applies near absolute stability, while near the inflection point one obtains the mKdV equation plus an extra, quadratic term. Corrections to the KdV equation "select" a single member of the one-parameter set of soliton solutions. In previous models this has always marked the threshold of a finite- amplitude instability of steady flow, but here it can alternatively be a stable, small-amplitude jam. That is, there can be a forward bifurcation from steady flow. The new, augmented mKdV equation which holds near an inflection point admits a continuous family of kink solutions, like the mKdV equation, and we derive the selection criterion arising from the corrections to this equation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133