全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Molecular Gas in Infrared Ultraluminous QSO Hosts

DOI: 10.1088/0004-637X/750/2/92

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30m telescope. The cold molecular gas reservoir in these objects is in a range of 0.2--2.1$\times 10^{10}M_\odot$ (adopting a CO-to-${\rm H_2}$ conversion factor $\alpha_{\rm CO}=0.8 M_\odot {\rm (K km s^{-1} pc^2)^{-1}}$). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency ($L_{\rm FIR}/L^\prime_{\rm CO}$) and the CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO detected QSOs reveals a tight correlation between L$_{\rm FIR}$ and $L^\prime_{\rm CO(1-0)}$ for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by {\it Spitzer}. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on $\sim$ kpc scale and the central black hole accretion process on much smaller scales.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133