全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Energy Spectrum and Quantum Hall Effect in Twisted Bilayer Graphene

DOI: 10.1103/PhysRevB.85.195458

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate the electronic spectra and quantum Hall effect in twisted bilayer graphenes with various rotation angles under magnetic fields, using a model rigorously including the interlayer interaction. We describe the spectral evolution from discrete Landau levels in the weak field regime to the fractal band structure in the strong field regime, and estimate the quantized Hall conductivity for each single gap. In weak magnetic fields, the low-energy conduction band of the twisted bilayer is quantized into electron-like Landau levels and hole-like Landau levels above and below the van Hove singularity, respectively, reflecting a topological change of the Fermi surface between electron pocket and hole pocket. Accordingly the Hall conductivity exhibits a sharp drop from positive to negative at the transition point. In increasing magnetic field, the spectrum gradually evolves into fractal band structure so-called Hofstadter's butterfly, where the Hall conductivity exhibits a nonmonotonic behavior varying from a minigap to a minigap. The magnetic field strength required to invoke the fractal band structure is more feasible in smaller rotating angle.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133